研究内容/Research

全体概要 / Overview

熱工学分野をバックグラウンドとして,熱・物質輸送と化学反応が絡む様々なシステムを対象に研究を行っています.このような系は現代社会の様々な技術に利用されており,効率や耐久性の向上,コスト削減,そして新規の価値を有する系の創出が常に求められています.具体的にはエネルギー変換技術として燃料電池や内燃機関,環境浄化技術として自動車排ガス浄化触媒システム,プロセス技術として燃焼合成による機能性ナノ粒子製造などの研究に取り組んでいます.これらの系内部の複雑な物理化学現象の解明とモデル化,およびそれらの知見に基づく系の最適化・高効率化が全体に共通する研究アプローチです.

関連の深い学問分野:熱工学,燃焼工学,電気化学,触媒化学

With a background in thermal engineering, our research focuses on various systems involving heat and mass transport coupled with chemical reactions. These systems are used in various technologies in modern society, and there is a constant need to improve efficiency and durability, reduce costs, and create systems with new value. Specifically, we are working on fuel cells and internal combustion engines as energy conversion technology, automotive exhaust aftertreatment systems as environmental purification technology, and production of functional nanoparticles by combustion synthesis as process technology. The common research approach is to elucidate and model the complex physical and chemical phenomena inside these systems, and to optimize and improve the efficiency of the systems based on the knowledge gained from these studies.

Related academic discipline:Thermal engineering, Combustion engineering, Electrochemistry, Catalytic chemistry

現在の研究テーマ / Current Research Topics

次世代の高効率発電・電気分解技術として注目を集める固体酸化物形燃料電池・電気分解セル(SOFC・SOEC)に関する研究を行っている.SOFC/ECの高性能化・長寿命化の鍵を握る多孔質電極に着目し,同位体ラベリングと反応のクエンチを組み合わせた独自の手法(同位体クエンチ法)を用いた電極内反応場分布の可視化・解析に取り組んでいる.

We are conducting research on solid oxide fuel cells and electrolysis cells (SOFC/SOEC), which are attracting attention as next-generation high-efficiency power generation and electrolysis technologies. We focus on porous electrodes, which are the key to high performance and long life of SOFC/EC. The visualization and analysis of the reaction distribution in the electrode using the developed method that combines isotope labeling and reaction quenching (isotope quenching technique) are underway.

機能性ナノ粒子は固体触媒や燃料電池・バッテリー用電極材料,発光材料など,様々な用途への応用が期待されている.本研究では緻密な微粒子構造制御が可能かつ簡便なナノ粒子製造プロセスとして火炎式噴霧熱分解法(燃焼合成)に着目し,本手法を用いた微粒子構造・機能設計技術の確立を目指している.

Functional nanoparticles are expected to be used for various applications such as solid catalysts, electrode materials for fuel cells and batteries, and luminescent materials. In this study, we focus on flame spray pyrolysis (combustion synthesis) as a simple process with high structural controllability to produce nanoparticles, and aim to establish a technology to design fine particle structures and functions using this method.

運輸部門におけるCO2排出量削減の加速が求められる中,将来のカーボンニュートラル液体燃料導入も見据え,内燃機関の熱効率向上は喫緊の重要課題である.本研究では高い熱効率が実現可能な超希薄燃焼ガソリンエンジンに着目し,筒内水噴射を組み合わせた熱効率向上技術や,更なる損失低減に向けて壁面熱損失や未燃炭化水素生成機構の解明に取り組んでいる.

With the requirement for accelerated reduction of CO2 emissions in the transportation sector, the improvement of thermal efficiency of internal combustion engines is an urgent and important issue, with a view to introducing carbon-neutral liquid fuels in the future. In this study, we focus on super-lean burn gasoline engines that can achieve high thermal efficiency, and investigate technologies to improve thermal efficiency combined with in-cylinder water injection, as well as wall heat loss and unburned hydrocarbon formation mechanisms to further reduce losses.

年々厳しさを増す自動車排ガス規制や燃料多様化への対応から、排気後処理システムのさらなる高性能化とコスト低減が求められる.本研究では反応モデル構築や新規触媒開発に向けた,ガソリン車用三元触媒の反応機構解明を目的として,同位体クエンチ法を用いた触媒内化学種分布の可視化・解析手法の開発を行っている.

The increasingly stringent automotive emission regulations and fuel diversification require higher performance and cost reduction of exhaust aftertreatment systems. In this study, we are developing a method to visualize and analyze the distribution of chemical species in the catalyst using isotope quenching technique to elucidate the reaction mechanism of three-way catalysts for gasoline vehicles in order to construct reaction models and develop new catalysts.